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Quantum Number Theory

Kenji Tokuo1

This paper shows that a theory of numbers can be developed within the framework
of typed quantum logic. First, the core system of typed quantum logic is stated pre-
cisely, on which a theory of numbers is to be built. Second, under a minimal additional
assumption about natural number objects, a step-by-step description of quantum real
numbers is provided. Finally, it is suggested that the “quantum reals” are modeled by
the “observables” in terms of quantum physics.
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1. INTRODUCTION

Based on typed quantum logic, this paper presents a formal theory of numbers
to describe the general area of quantum mathematics. In the previous paper (Tokuo,
2003), we have proposed a basic system of typed quantum logic. We restate its
syntax and semantics here in a form suitable to the present context, and add new
axioms in order to incorporate the concept of numbers. Specifically, we need the
axiom of infinity to ensure that there exist an infinite number of individuals that are
distinct from each other. The most common representation of the axiom is known
as the Peano rules:

Sn = 0 � p (1.1)

Sm = Sn � m = n (1.2)

� φ(0) φ(m) � φ(Sm)

� φ(n)
(1.3)

where m, n is a term of type N (i.e., numerals); p is a term of type � (i.e., a
formula); 0 is the unique constant of type N ; S is a term-forming operator which
acts on a term of type N , and produces another term of type N .

We denote the set of natural numbers by N. To be precise, N ≡ {x ∈ N |	}. In
the context of classical logic, the Peano rules and the following Simple Recursion
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Principle (SRP) are provably equivalent.

a ∈ α, h ∈ αα � ∃! f ∈ αN.(( f (0) = a) ∧ ( f (Sn) = h( f (n))) (1.4)

where α is a given set; αα (αN) is a set of all functions from α to α (from N to α),
respectively. Intuitively, SRP asserts that for a given set α, a given function h on α

and a given element a of α, there exists a unique sequence of α that is recursively
generated. Thus, classically, it does not matter which of the rules are chosen as
axioms (for proofs, see Bell, 1988.)

In quantum logic, however, the situation is more complicated. Since quantum
logic is weaker than classical logic in the sense that the former has fewer theorems
(derivable propositions) than the letter, we need to be careful in choosing a minimal
set of axioms to derive desirable theorems. In view of this, we postulate SRP as
one of the axioms, and consider the Peano rules and other principles of number
theory as derivable ones. What needs to be emphasized throughout this paper is
that such derivations can be carried out formally.

2. FORMAL SYNTAX

The language L for typed quantum logic being introduced here is essentially
a corrected version of that given in Tokuo (2003), the predecessor of this paper.
To prove the theorems listed in Section 4 of the paper, we have had to assume
(a weak form of) the rule of extensionality (2.19).

2.1. Terms

A term is a meaningful expression in our formal language. Each term has a
property called type.

Definition 2.1. (Type).

(i) � is a special type. (Truth type)
(ii) At most countable symbols C1, C2, C3, . . . denote general types.

(Atomic type)
(iii) If A is a general type, so is PA. (Power type)
(iv) If A and B are general types, so is A × B. (Product type)
(v) Nothing else is a type except as defined by (i) and a finite number of

applications of (ii)–(iv).

A term of type � is called a formula. For any general type A, a term of
type PA is called a set-like term. A term with no free variables is called closed.
A closed set-like term and a closed formula are called an L-set and a sentence,
respectively.
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Definition 2.2. (Term).

(i) For each type A, countably many symbols xA, yA, z A, . . . denote vari-
ables of type A (type subscripts are mostly omitted for simplicity). A
variable of each type is a term of that type.

(ii) For each type A, countably many symbols cA, dA, eA, . . . denote con-
stants of type A (type subscripts are mostly omitted for simplicity). A
constant of each type is a term of that type.2

(iii) If φ(x) is a formula that possibly contains a variable x of general type
A, then {x ∈ A|φ(x)} is a set-like term of type PA.

(iv) If a and b are terms of general type A and B, respectively, then 〈a, b〉
is a term of type A × B.

(v) If a is a term of type A × B, then (a)1 and (a)2 are terms of type A and
type B, respectively.

(vi) If a and a′ are terms of the same type, then a = a′ is a formula.
(vii) If a and α are terms of general type A and type PA, respectively, then

a ∈ α is a formula.
(viii) If p and q are formulas, then so is p ∧ q .

(ix) if p is a formula, then so is ¬p.
(x) If φ(x) is a formula that possibly contains a variable x of type A, then

∀x ∈ A.φ(x) is a formula.
(xi) Nothing else is a term except as defined by a finite number of applica-

tions of the above clauses.

Notation. Parentheses are used to disambiguate expressions as usual. Some other
useful symbols can be introduced as abbreviations:

• p ∨ q ≡ ¬(¬p ∧ ¬q)
• p ⇒ q ≡ ¬p ∨ (p ∧ q)
• p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p) ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
• ∃x ∈ A.φ(x) ≡ ¬(∀x ∈ A.¬φ(x))
• ∃!x ∈ A.φ(x) ≡ ∃x ∈ A.(φ(x) ∧ ∀y ∈ A.(φ(y) ⇒ (x = y)))
• 	 ≡ ¬(p ∧ ¬p)
• ⊥ ≡ ¬	
• {〈x , y〉 ∈ A × B|φ(x , y)} ≡ {z ∈ A × B|∃x ∈ A.(∃y ∈ B.(z = 〈x , y〉

∧ φ(z)))}
• ∀x ∈ α.φ(x) ≡ ∀x ∈ A.((x ∈ α) ⇒ φ(x))
• ∃x ∈ α.φ(x) ≡ ∃x ∈ A.((x ∈ α) ∧ φ(x))
• ∃!x ∈ α.φ(x) ≡ ∃!x ∈ A.((x ∈ α) ∧ φ(x))
• {x ∈ α|φ(x)} ≡ {x ∈ A|(x ∈ α) ∧ φ(x)}

2 The assumption that there are an infinite number of constants is not essential but it simplifies the
arguments in Theorem 3.6.
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The usual set-theoretic operations and relations are defined as follows:

• {a} ≡ {x ∈ A|x = a}
• α ⊆ β ≡ ∀x ∈ α.x ∈ β (where α and β are of the same type PA.)
• α ∩ β ≡ {x ∈ A|(x ∈ α) ∧ (x ∈ β)} (where α and β are of the same type

PA.)
• α ∪ β ≡ {x ∈ A|(x ∈ α) ∨ (x ∈ β)} (where α and β are of the same type

PA.)
• ∩U ≡ {x ∈ A|∀y ∈ U.x ∈ y}
• ∪U ≡ {x ∈ A|∃y ∈ U.x ∈ y}
• UA or A ≡ {x ∈ A|	}
• φA or φ ≡ {x ∈ A|⊥}
• −α ≡ {x ∈ A|¬(x ∈ α)}
• Pα ≡ {x ∈ PA|x ⊆ α}
• α × β ≡ {〈x , y〉 ∈ A × B|(x ∈ α) ∧ (y ∈ β)} (where α is of type PA and

β is of type PB. Both may be of the same type.)
• βα ≡ {x ∈ P(A × B) | (x ⊆ (α × β)) ∧ ∀y ∈ α.(∃!z ∈ β.〈y, z〉 ∈ x)}

(where α is of type PA and β is of type PB. Both may be of the same
type.)

• gf ≡ {〈x , z〉 ∈ α × γ |∃y ∈ β.((〈x , y〉 ∈ f ) ∧ (〈y, z〉 ∈ g))}

2.2. Rules

We now state the formal proof procedure for L. In the following, we write
A, B, . . . for types, p, q , . . . for formulas, a, b, . . . for terms, and x , y, . . . for vari-
ables. φ(x) represents a formula that possibly contains a free variable x , φ(a) a
formula obtained from φ(x) by replacing all free occurrences of x with a. The
substitution is performed in the usual manner, that is, variables are renamed to
avoid free variable capture if necessary. For notational simplicity, we exclusively
consider formulas with at most one free variable; the modification for multiple
free variables is easy to perform. � denotes a finite (possibly empty) multiset of
formulas, where a multiset means a set in which each element may occur more
than once.

The intuitive meanings of the clauses listed below are as follows. The ex-
pression of the form � � p is called a sequent (Bell, 1988), asserting that one can
syntactically deduce the formula p from the assumption of all the formulas in �.
The expressions �, p � q and p, q � r mean � ∪ {p} � q and {p, q} � r , respec-
tively. The sequents above the horizontal line are the premises of the rule, and the
one below it is the conclusion of the rule: if all the sequents above the line hold, so
does the one below it. The one-line rules such as (2.1) below are sometimes called
improper rules, asserting that those sequents always hold without any premises.
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Definition 2.3. (Formal Proof). A diagram of rules that satisfies the following
inductive specifications is said to be a proof diagram. The bottommost sequent of
a proof diagram is called its end sequent.

(i) An improper rule is itself a proof diagram.
(ii) If P is a proof diagram whose end sequent is S, and S/T is one of the

rules listed above, then P/T is a proof diagram whose end sequent is
T .3

(iii) If P1 and P2 are both proof diagrams whose end sequents are S1 and S2,
respectively, and S1 S2/T is one of the rules listed above, then P1 P2/T
is a proof diagram whose end sequent is T .

A proof diagram whose end sequent is T is called a proof diagram of T . We
say that the sequent T is provable if and only if there exists a proof diagram of T .
We often omit the phrase “is provable” and simply write “� � p” to mean the
sequent is provable.

Structural rules:

p � p (2.1)

� � p �, p � q

� � q
(Cut) (2.2)

� � q

�, p � q
(2.3)

�(x) � φ(x)

�(a) � φ(a)
(2.4)

where any free variables occurring in a are not bounded in the lower sequent.
Logical rules:

p ∧ q � p (2.5)

p ∧ q � q (2.6)

� � p � � q

� � p ∧ q
(2.7)

p � ¬¬p (2.8)

¬¬p � p (2.9)

p ∧ ¬p � q (2.10)

p � q

¬q � ¬p
(2.11)

3 We have written a slash (‘/’) for a horizontal line.
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∀x ∈ A.φ(x) � φ(a) (2.12)

where variables are renamed if necessary to avoid free variable capture.

� � φ(x)

� � ∀x ∈ A.φ(x)
(2.13)

where x does not occur freely in �.

p, p ⇒ q � q (Orthomodular law) (2.14)

Equality rules:

� a = a (2.15)

a = a′, φ(a) � φ(a′) (2.16)

where variables are renamed if necessary to avoid free variable capture.

p � q q � p

� p = q
(2.17)

Set rules:

� (a ∈ {x ∈ A|φ(x)}) = φ(a) (Comprehension) (2.18)

(x ∈ α) = (x ∈ β) � α = β (Extensionality) (2.19)

� ((〈a, b〉)1 = a) ∧ ((〈a, b〉)2 = b) (2.20)

� 〈(a)1, (a)2〉 = a (2.21)

Remark. � f ∈ βα is a sequent asserting that f is a term representing a function
from α to β, where α and β are set-like terms. In such cases, it is often desirable
to introduce an explicit term representing the function value f (x) such that x ∈
α � 〈x , f (x)〉 ∈ f .

Strictly, this convention is justified by the fact that adding a new term f ∗(x)
and a new rule x ∈ α � 〈x , f ∗(x)〉 ∈ f to L yields a conservative extension of L.
For technical details, the reader is referred to Bell (1988). Bearing this in mind we
simply write f (x) for f ∗(x) in this paper.

In the same spirit, if � ∃x ∈ A.φ(x) holds, then one may temporarily use a
new term c of type A such that φ(c).

3. FORMAL SEMANTICS

This section provides mathematically strict meanings of the expressions in
L. For this purpose, a class of models for L is specified. First, the precise con-
cept of validity is defined with respect to this class of models. Some important
results are stated: any provable sequents are valid with respect to this class of
models (soundness), and conversely, any valid sequents with respect to this class
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of models are provable (completeness). To prove a completeness theorem, a con-
crete general model, called the canonical model, is constructed.

3.1. General Model

Definition 3.1 (Frame). For each type A, its domain DA is defined as a nonempty
set satisfying the following conditions.

• For the truth type �, its domain D� is a nonempty orthomodular lattice.
Its order, equality, inf, orthocomplementation, top and bottom are denoted
by ≤, =, ∧, ∗, 	 and ⊥, respectively.4

• For each power type PA, its domain DPA is a nonempty subset of DDA
� (the

set of all functions from DA to D�).
• For each product type A × B, its domain DA × B is the product set

DA × DB .

A collection {DA}A of domains of all types is called an L-frame.

Definition 3.2 (Assignment). Given an L-frame {DA}A, an assignment ρ is de-
fined as a map on the sets of all variables in L, satisfying the condition that
ρ(xA) ∈ DA for each type A. Given an assignment ρ, a variable xA and an element
δ ∈ DA, we write (ρ : xA/δ) for the assignment which is the same map as ρ except
that the value of xA is δ.

Definition 3.3 (General Model). An L-frame {DA}A is said to be a general model
M for L if there exists a map [·]ρ from the set of all terms to their domains,
satisfying the following conditions.

(i) [xA]ρ = ρ(xA)
(ii) [cA]ρ ∈ DA

(iii) [{x ∈ A|φ(x)}]ρ = ([a]ρ  → [φ(a)]ρ)
(iv) [(x ∈ α) = (x ∈ β)]ρ ≤ [α = β]ρ
(v) [〈a, b〉]ρ = ([a]ρ , [b]ρ)

(vi) [(〈a, b〉)1]ρ = [a]ρ ; [(〈a, b〉)2]ρ = [b]ρ
(vii) [a = a′]ρ = 	 if [a]ρ = [a′]ρ

(viii) [a = a′]ρ ∧ [φ(a)]ρ ≤ [φ(a′)]ρ
(ix) [a ∈ α]ρ = [α]ρ([a]ρ)
(x) [p ∧ q]ρ = [p]ρ ∧ [q]ρ

(xi) [¬p]ρ = [p]∗ρ
(xii) [∀x ∈ A.φ(x)]ρ = ∧

δ∈DA
{[φ(x)](ρ:x/δ)}5

4 Some symbols are the same as our logical symbols; this is not expected to cause confusion since it is
clear from the context.

5 This condition implies that the limit on the right side exists and is equal to the left side.
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Definition 3.4 (Validity). Let M be a general model for L. For � ≡ {p1,
p2, . . . , pm}, we define [�]ρ as [ρ1]ρ ∧ [p2]ρ ∧ · · · ∧ [pm]ρ if m > 0; 	 other-
wise. We say that � � p is valid in M, or symbolically we write � |=M p, if
[�]ρ ≤ [p]ρ for any ρ. We write � |= p if � |=M p in every general model M.

3.2. Soundness and Completeness

Theorem 3.5. (Soundness). If � � p, then � |= p.

Proof: We can show that the end sequent in every proof diagram is valid in every
general model, by induction on the construction of the proof. Given any model,
the improper rule is obviously valid. For the induction step, one may routinely
verify that for each rule, if all the premises are valid, then the conclusion is also
valid. �

Theorem 3.6. (Completeness). If � |= p, then � � p.

Proof: The proof begins by introducing the Lindenbaum algebra of L. Let us
define a relation ∼ on the set of all terms: a ∼ a′ if and only if the sequent � a = a′

is provable. It is easy to see that this relation is an equivalence relation: a relation
that is reflexive, symmetric, and transitive. The equivalence class of a is denoted by
[a]. For each type A, let DA be the set of all the equivalence classes of closed terms
of type A. The set of all equivalence classes of sentences forms an orthomodular
lattice with the following order relation.

[p] ≤ [q] if and only if p � q

ThisL-frame {DA}A with the map [a]ρ
def= [aρ] is called the canonical modelMcan

for L, where aρ means the closed term obtained from a by replacing all free oc-
currences of x with the closed term c such that ρ(x) = [c]. Then we see that
Mcan is indeed a general model; the only nontrivial part is to verify (xii) in
Definition 3.3. The inequality

[∀x ∈ A.φ(x)]ρ ≤ [φ(c)]ρ for any closed term c of type A

follows from the axiom (2.12). For the other direction of the inequality, suppose
that [p]ρ ≤ [φ(c)]ρ for any closed term c of type A. This means that p � φ(cA)
is provable for any constant cA. Let cA be a fresh constant that does not occur in
the sequent p � φ(x). We denote by � the proof diagram of p � φ(cA). Replacing
all occurrences of variable x in �, if any, with a fresh variable, and replacing all
occurrences of cA in � with x , we obtain the proof diagram of p � φ(x). Applying
the axiom (2.13) yields the proof diagram of p � ∀x ∈ A.φ(x), which means that
[p]ρ ≤ [∀x ∈ A.φ(x)]ρ . �
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The completeness proof using the canonical model Mcan goes as follows.
For sequents with no free variables, suppose that � |= p. In particular, � |=Mcan p
for the canonical model Mcan. This immediately means that � � p is provable.
For sequents with a free variable xA, �(xA) |=Mcan φ(xA) means that [�(xA)]ρ ≤
[φ(xA)]ρ for any assignment ρ. Hence we have [�(cA)]ρ ≤ [φ(cA)]ρ for any fresh
constant cA, which means that �(cA) � φ(cA) is provable. We denote by � the
proof diagram of this proof. Replacing all occurrences of variable x in �, if any,
with a fresh variable, and replacing all occurrences of cA in � with x , we obtain
the proof diagram of �(x) � φ(x).

3.3. Consistency

This subsection verifies by constructing a simple concrete model that our
typed quantum logic is indeed consistent and does not collapse into classical logic.

• For the truth type �, let D� be the orthomodular lattice L6
def= {a, a∗, b, b∗,

⊥, 	} where the only ordering relations are ⊥ ≤ a ≤ 	, ⊥ ≤ a∗ ≤ 	, ⊥
≤ b ≤ 	 and ⊥ ≤ b∗ ≤ 	.

• For each atomic type C , let DC be some set.
• For each power type PA, let DPA be the set of all functions from DA to

D�.

The interpretation map [·]ρ is inductively defined as follows.

(i) [xA]ρ
def= ρ(xA).

(ii) Let [cA]ρ be some element of DA.

(iii) [{x ∈ A|φ(x)}]ρ def= δ  → [φ(x)](ρ:x/δ).

(iv) [〈a, b〉]ρ def= ([a]ρ , [b]ρ).

(v) [(〈a, b〉)1]ρ
def= [a]ρ ; [(〈a, b〉)2]ρ

def=[b]ρ .

(vi) [a = a′]ρ
def= 	 if [a]ρ = [a′]ρ ; ⊥ otherwise.

(vii) [a ∈ α]ρ
def= [α]ρ([a]ρ).

(viii) [p ∧ q]ρ
def= [p]ρ ∧ [q]ρ.

(ix) [¬p]ρ
def= [p]∗ρ.

(x) [∀x ∈ A.φ(x)]ρ
def= ∧

δ∈DA
{[φ(x)]ρ(x/δ)}.

It is easy to see that this frame and interpretation satisfy the conditions in
Definition 3.3. Since 	 #= ⊥ in L6, the soundness theorem assures the consistency
of L.

To see that it is not classical, let cA, dA and αPA be constants such that

[αPA]ρ([cA]ρ)
def= a and [αPA]ρ([dA]ρ)

def= b for some [·]ρ . Since a ∧ (b ∨ a∗) #≤
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(a ∧ b) ∨ (a ∧ a∗) in L6, we have again by the soundness theorem that the se-
quent (cA ∈ αPA) ∧ ((dA ∈ αPA) ∨ ¬(cA ∈ αPA)) � ((cA ∈ αPA) ∧ (dA ∈ αPA)) ∨
((cA ∈ αPA) ∧ ¬(cA ∈ αPA)) is unprovable, which means that the distributive law
fails in L.

4. NATURAL NUMBERS

In this section, we develop a theory of numbers within the framework of typed
quantum logic by adding extra symbols and rules to L.

4.1. Theory of Quantum Numbers

The extended theory LN consists of L together with the following symbols
and rules.

Symbols:

• N is a general type. (Number type)
• The special constant 0 is a term of type N .
• S is a term-forming symbol that acts on a term of type N : if n is a term of

type N , then so is Sn.

Number rules:

� cN = 0 (4.1)

a ∈ α, h ∈ αα � ∃! f ∈ αN.(( f (0) = a) ∧ ( f (Sn) = h( f (n))) (SRP) (4.2)

Remark . A term of type N is called a numeral. We write m, n, . . . for numerals,
and N the set of numerals. To be precise, N ≡ {x ∈ N |	}.

The rule (4.2) is referred to as the Simple Recursion Principle, or SRP, which
guarantees the existence of an infinite sequence.

4.2. Peano Rules

The Peano rules are formulated inLN in the following way. What is important
is that these rules are derivable in LN .

Sn = 0 � p (4.3)

Sm = Sn � m = n (4.4)

� φ(0) φ(m) � φ(Sm)

� φ(n)
(4.5)

Theorem 4.1. (4.3)–(4.5) is provable in LN .
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Proof: We need the following lemma. �

Lemma 4.2. (Primitive Recursion Principle, PRP).

a ∈ α, h ∈ αα×N � ∃! f ∈ αN.(( f (0) = a) ∧ ( f (Sn) = h( f (n), n)) (4.6)

Proof: Let α′ ≡ α × N and h′ ≡ {〈x , y〉 ∈ α′ × α′|(x = 〈a, m〉) ∧ (y = 〈b, n〉)
∧ (b = h(〈a, m〉)) ∧ (n = m)}. Applying SRP to α′ and h′ yields a′ ∈ α′, h′ ∈
α′α′ � ∃! f ′ ∈ α′N.( f ′(0) = a′) ∧ ( f ′(Sn) = h′( f ′(n))). We have PRP by letting
f ≡ {〈x , y〉 ∈ N × α|y = ( f ′(x))1} and a ≡ (a′)1. �

Proof of Theorem: (4.3): Let a ≡ ⊥, α ≡ {x ∈ �|(x = 	) ∨ (x = ⊥)} and
h ≡ {〈x , y〉 ∈ α × α|y = 	}. Applying SRP to a, α and h yields � ∃! f ∈ αN.

(( f (0) = ⊥) ∧ ( f (Sn) = h( f (n)))). Hence we have Sn = 0 � ⊥ = 	, that is,
Sn = 0 � p for any formula p.

(4.4): Let a ≡ 0, α ≡ N and h ≡ {〈x , y〉 ∈ (N × N) × N|y = (x)2}. Apply-
ing PRP to a, α and h yields � ∃! f ∈ NN.(( f (0) = 0) ∧ ( f (Sn) = n)). Hence we
have Sm = Sn � f (Sm) = f (Sn), that is, Sm = Sn � m = n.

(4.5): Suppose � φ(0) and φ(m) � φ(Sm). Let a ≡ 0, α ≡ {x ∈ N |φ(x)} and
h ≡ {〈x , y〉 ∈ α × α|y = Sx}. Our aim is to show that � n ∈ α. Applying SRP to
a, α and h yields � ∃! f ∈ αN.(( f (0) = 0) ∧ ( f (Sn) = S( f (n)))). Obviously, h
can be extended to a function h′ that is defined on N. Applying SRP to a, N and
h′ yields � ∃! f ′ ∈ NN.(( f ′(0) = 0) ∧ ( f ′(Sn) = S( f ′(n)))). Since we can infer
� f ∈ NN from � f ∈ αN, we obtain � f = f ′ by the uniqueness condition in
SRP. Similarly, letting id ≡ {〈x , y〉 ∈ N × N|x = y}, we also have � id ∈ NN

and � (id(0) = 0) ∧ (id(Sn) = S(id(n))). Therefore we obtain � f ′ = id by the
uniqueness condition in SRP. Hence � f = id. This means that � 〈n, n〉 ∈ f , that
is, � n ∈ α. �

4.3. Numerical Functions

Addition of N

Let a ≡ idN ≡ {〈x , y〉 ∈ N × N|y = x} (the identity function on N), α ≡ NN

and h ≡ {〈x , y〉 ∈ α × α|y = sx}, where s ≡ {〈x , y〉 ∈ N × N|y = Sx}.
Applying SRP to a, α and h yields the unique function f+ from N to α such
that

� ( f+(0) = idN) ∧ ( f+(Sn) = s( f+(n))). (4.7)

We denote ( f+(m))(n) by m + n following the usual convention.
This +, as expected, satisfies the usual properties of addition. Henceforth, we

use the symbols i, j, k, l, m, n, s, t to refer to numerals. To avoid an execessive use
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of parentheses, the operator + is assumed to bind stronger than = and the other
connectives, e.g., l = m + n is parsed as l = (m + n).

Proposition 4.3. � 0 + n = n.

Proof: Immediate from (4.7). �

Proposition 4.4. � Sm + n = S(m + n)

Proof: Immediate from (4.7). �

Proposition 4.5. � n + 0 = n.

Proof: By formal induction (4.5) on n. �

Proposition 4.6. � m + Sn = Sm + n.

Proof: By formal induction (4.5) on m. �

Proposition 4.7. � m + n = n + m.

Proof: By formal induction (4.5) on n. For the base case, we have � m + 0 =
0 + m by Proposition 4.3 and 4.5. For the induction step, we must prove

m + n = n + m � m + Sn = Sn + m. (4.8)

This sequent is rewritten as m + n = n + m � S(m + n) = S(n + m) by Proposi-
tion 4.6 and 4.4. Thus (4.8) holds. �

Proposition 4.8. � (l + m) + n = l + (m + n).

Proof: By formal induction (4.5) on n. For the base case, we have � (l + m) +
0 = l + (m + 0) by Proposition 4.5. For the induction step, we must prove

(l + m) + n = l + (m + n) � (l + m) + Sn = l + (m + Sn). (4.9)

This sequent is rewritten as (l + m) + n = l + (m + n) � S((l + m) + n) = S(l +
(m + n)) by Proposition 4.6 and 4.4. Thus (4.9) holds. �

Proposition 4.9. m + n = 0 � (m = 0) ∧ (n = 0).

Proof: We prove the equivalent sequent � (m + n = 0) ⇒ ((m = 0) ∧ (n = 0))
by formal induction (4.5) on n. The base case clearly holds. For the induction step,
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it is sufficient to prove

� (m + Sn = 0) ⇒ ((m = 0) ∧ (Sn = 0)). (4.10)

This sequent is rewritten as � ⊥ ⇒ ((m = 0) ∧ (Sn = 0)) by Proposition 4.6, 4.4
and (4.3). Thus (4.10) holds. �

Proposition 4.10. l + m = l + n � m = n.

Proof: We prove the equivalent sequent � (l + m = l + n) ⇒ (m = n) by for-
mal induction (4.5) on l. The base case clearly holds. For the induction step, we
must prove

(l + m = l + n) ⇒ (m = n) � (Sl + m = Sl + n) ⇒ (m = n). (4.11)

This sequent is rewritten as (l + m = l + n) ⇒ (m = n) � (S(l + m) = S(l + n))
⇒ (m = n). by Proposition 4.4. Since S(l + m) = S(l + n) � l + m = l + n holds
by (4.4), and clearly l + m = l + n � S(l + m) = S(l + n) holds, we obtain �
(S(l + m) = S(l + n)) = (l + m = l + n). Thus (4.11) holds. �

Multiplication of N

Let a ≡ 0N ≡ {〈x , y〉 ∈ N × N|y = 0} (the zero function on N), α ≡ NN and
h ≡ {〈x , y〉 ∈ α × α|y = x + idN}, where addition of functions is defined point-
wise in the obvious way. Applying SRP to a, α, and h yields the unique function
f× from N to α such that

� ( f×(0) = 0N) ∧ ( f×(Sn) = ( f×(n) + idN)). (4.12)

We denote ( f×(m))(n) by m · n, or simply mn, following the usual convention. To
avoid an excessive use of parentheses, the operator · is assumed to bind stronger
than +, = and the other connectives.

For later use, we list some propositions on multiplication.

Proposition 4.11. � 0n = 0.

Proof: Immediate from (4.12). �

Proposition 4.12. � (Sm)n = mn + n.

Proof: Immediate from (4.12). �

Proposition 4.13. � n(S0) = n.

Proof: By formal induction (4.5) on n. �
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Proposition 4.14. � l(m + n) = lm + ln.

Proof: By formal induction (4.5) on l. �

Proposition 4.15. � mn = nm.

Proof: By formal induction (4.5) on m, using Proposition 4.13 and 4.14. �

Proposition 4.16. � (lm)n = l(mn).

Proof: By formal induction (4.5) on l, using Proposition 4.14 and 4.15. This
proposition allows us to omit parentheses in expressions such as (lm)n
and l(mn). �

Order on N

Now we proceed to define order on N. We set ON ≡ {〈x , y〉 ∈ N × N | ∃z ∈
N.(y = x + z)} and write m ≤ n for 〈m, n〉 ∈ ON. To see that this relation ≤ is
indeed a linear order relation, we need to check if it satisfies reflexivity, transitivity,
antisymmetry, and linearity.

Proposition 4.17. (Reflexivity). � n ≤ n.

Proof: Immediate from Proposition 4.5. �

Proposition 4.18. (Transitivity). l ≤ m, m ≤ n � l ≤ n.

Proof: Immediate from Proposition 4.8. �

Proposition 4.19. (Antisymmetry). m ≤ n, n ≤ m � m = n.

Proof: Immediate from Proposition 4.9 and 4.10. �

Proposition 4.20. (Linearity). � (m ≤ n) ∨ (n ≤ m).

Proof: By formal induction (4.5) on m. The base case is clear since � 0 ≤ n. For
the induction step, we must prove (m ≤ n) ∨ (n ≤ m) � (Sm ≤ n) ∨ (n ≤ Sm),
that is, we must prove

m ≤ n � (Sm ≤ n) ∨ (n ≤ Sm) (4.13)
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and

n ≤ m � (Sm ≤ n) ∨ (n ≤ Sm). (4.14)

We need the following lemmas. �

Lemma 4.21. m ≤ n � (m = n) ∨ ∃x ∈ N.((m ≤ x) ∧ (Sx = n)).

Proof: We suppose n = m + k and prove the equivalent sequent � (n = m +
k) ⇒ ((m = n) ∨ ∃x ∈ N.((m ≤ x) ∧ (Sx = n)) by formal induction (4.5) on k.
The base case clearly holds. For the induction step, it is sufficient to prove
� (n = m + Sk) ⇒ ((m = n) ∨ ∃x ∈ N.((m ≤ x) ∧ (Sx = n))), where we can re-
place m + Sk with S(m + k) by Proposition 4.4. Finally, suppose x ≡ m + k. �

Lemma 4.22. � n ≤ Sn.

Proof: Obvious. �

Lemma 4.23. m ≤ n � Sm ≤ Sn.

Proof: In general, we have n = m + l � Sn = S(m + l). By Proposition 4.4, we
can replace S(m + l) with Sm + l. �

We now turn to prove the linearity. To prove (4.13), we have m ≤ n � (m =
n) ∨ ∃l ∈ N.((m ≤ l) ∧ (Sl = n)) by Lemma 4.21, m = n � n ≤ Sm by Lemma
4.22, and (m ≤ l) ∧ (Sl = n) � (Sm ≤ Sl) ∧ (Sl = n) � Sm ≤ n by Lemma 4.23.
Applying the cut rule to these sequents yields the desired result. To prove (4.14),
we have � m ≤ Sm by Lemma 4.22 and n ≤ m, m ≤ Sm � n ≤ Sm by the tran-
sitivity of ≤. Applying the cut rule to these sequents yields the desired result.

Notation. We write m < n for ∃x ∈ N.((n = m + x) ∧ ¬(x = 0)).

5. CONSTRUCTING REAL NUMBERS

This section presents a step-by-step description of quantum real numbers. We
take natural numbers as basic objects, construct rational numbers from pairs of
natural numbers, and characterize real numbers as Dedekind’s cuts in the set of
rational numbers.

5.1. Rational Numbers

For simiplicity, we continue to restrict ourselves to non-negative numbers.
We extend our number objects to include negatives in the final subsection.
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We write N+ for the set of positive natural numbers, i.e, N+ ≡ {x ∈ N|S0 ≤
x}. We set 〈m, n〉Q ≡ {〈x , y〉 ∈ N × N+|∃z ∈ N+.(zmy= znx)} for each pair 〈m, n〉
such that � 〈m, n〉 ∈ N × N+. 〈m, n〉Q is called a quantum rational number, or
simply a rational. Intuitively, 〈m, n〉Q corresponds to the usual rational number
m/n.

Theorem 5.1. The LN-set {〈〈x , y〉, 〈z, w〉〉 ∈ (N × N+) × (N × N+)|〈x , y〉 ∈
〈z, w〉Q} is an equivalence relation.

Proof: We must prove

� 〈m, n〉 ∈ 〈m, n〉Q (Reflexivity) (5.1)

〈k, l〉 ∈ 〈m, n〉Q � 〈m, n〉 ∈ 〈k, l〉Q (Symmetry) (5.2)

〈i, j〉 ∈ 〈k, l〉Q, 〈k, l〉 ∈ 〈m, n〉Q � 〈i, j〉 ∈ 〈m, n〉Q (Transitivity). (5.3)

(5.1) and (5.2) clearly hold. The sequent (5.3) means skj = sli, tml = tnk � x ∈
N+.(xmj = xni). Letting x ≡ lst and using the left side equations of the sequent,
we obtain the right side equation of the sequent (where we have used the fact that
S0 ≤ m, S0 ≤ n � S0 ≤ mn). �

The set of all non-negative rationals is represented by the LN-set Q ≡ {x ∈
P(N × N) | ∃y ∈ N.(∃z ∈ N+.(x = 〈y, z〉Q))}. We write nQ for 〈n, S0〉Q.

Addition of Q

To define addition of Q, we write 〈k, l〉Q + 〈m, n〉Q for 〈kn + lm, ln〉Q. We
need to check that + on Q is a well-defined operation. It is immediate that
� 〈kn + lm, ln〉Q ∈ Q holds. We must prove 〈k ′, l ′〉 ∈ 〈k, l〉Q, 〈m ′, n′〉 ∈ 〈m, n〉Q

� 〈k ′n′ + l ′m ′, l ′n′〉 ∈ 〈kn + lm, ln〉Q, that is, skl ′ = slk ′, tmn′ = tnm ′ � ∃x ∈
N+.(x(kn + lm)(l ′n′) = x(ln)(k ′n′ + l ′m ′)). This sequent indeed holds for x ≡ st .

This +, as expected, satisfies the usual properties of addition. In the sequel,
we use metavariables α, β, γ , . . . to range over quantum rational numbers.

Proposition 5.2. � 0Q + α = α.

Proof: Obvious. �

Proposition 5.3. � α + β = β + α.

Proof: This follows from the properties of N. �

Proposition 5.4. � (α + β) + γ = α + (β + γ ).
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Proof: This follows from the properties of N. �

Lemma 5.5. m ∈ N+, mn = 0 � n = 0

Proof: In general, we have m ∈ N+ � S0 ≤ m � ∃x ∈ N.(m = S0 + x) � ∃x ∈
N.(m = S(0 + x)) � ∃x ∈ N.(m = Sx). Suppose m = Sl. Then we have m ∈ N+,
mn = 0 � (Sl)n = 0 � ln + n = 0 � n = 0 by Proposition 4.12 and 4.9. �

Proposition 5.6. α + β = 0Q � α = 0Q ∧ β = 0Q.

Proof: Suppose α ≡ 〈k, l〉Q and β ≡ 〈m, n〉Q. Then α + β = 0Q means ∃x ∈
N+.(x(kn + lm) = 0). We have kn + lm = 0 by Lemma 5.5. Hence kn = 0 and
lm = 0 by Proposition 4.9. Using Lemma 5.5 again, we get k = 0 and m = 0,
which means that α = 0Q and β = 0Q. �

Proposition 5.7. α + β = α + γ � β = γ.

Proof: This follows from the properties of N. �

Multiplication of Q

To define multiplication of Q, we write 〈k, l〉Q · 〈m, n〉Q for 〈km, ln〉Q. We
need to check that · is a well-defined operation. It is immediate that � 〈km, ln〉Q ∈
Q. We must prove 〈k ′, l ′〉 ∈ 〈k, l〉Q, 〈m ′, n′〉 ∈ 〈m, n〉Q � 〈k ′m ′, l ′n′〉 ∈ 〈km, ln〉Q,
that is, skl ′ = slk ′, tmn′ = tnm ′ � ∃x ∈ N+.(x(km)(l ′n′) = x(ln)(k ′m ′)). This
sequent indeed holds for x ≡ st .

The usual algebraic properties of multiplication such as the existence of iden-
tity (1Q), associativity, commutativity, and distributivity are reduced to the prop-
erties of the operations of N. Besides, it is important that there exists an inverse
element for each element in Q, except 0Q : 〈m, n〉Q · 〈n, m〉Q = 1Q. We write
〈m, n〉∗Q for 〈n, m〉Q.

5.1.1. Order on Q

We set OQ ≡ {〈x , y〉 ∈ Q × Q|∃z ∈ Q·(y = x + z)} and write α ≤ β for
〈α, β〉 ∈ OQ. To see that this relation ≤ on Q is indeed a linear order relation,
we need to check if it satisfies reflexivity, transitivity, antisymmetry and linearity.
The first three properties are easily established by using Proposition 5.2–5.4, 5.6,
and 5.7. We only show the linearity.

Proposition 5.8. � (α ≤ β) ∨ (β ≤ α).
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Proof: Suppose α ≡ 〈α1, α2〉Q and β ≡ 〈β1, β2〉Q. By the linearity of ON, we
have � (m ≤ n) ∨ (n ≤ m) for each natural numbers m, n. Letting m = α1β2 and
n = α2β1, we have � ∃x ∈ N.(α2β1 = α1β2 + x) ∨ ∃y ∈ N.(α1β2 = α2β1 + y).
Multiplying α2β2 to both side of the equations yields � ∃x ∈ N.(α2β2α2β1 =
α2β2α1β2 + α2β2x)∨ ∃y ∈ N.(α2β2α1β2 = α2β2β1α

2 + α2β2 y) Letting z1 ≡ x ,
z2 ≡ α2β2, w1 ≡ y and w2 ≡ α2β2, we have � ∃z1 ∈ N.(∃z2 ∈ N+.(β1α1z2 =
β2α1z2 + β2α2z1)) ∨ ∃w1 ∈ N.(∃w2 ∈ N+.(α1β2w2 = α2β1w2 + α2β2w1)). Finally,
letting z ≡ 〈z1, z2〉Q and w ≡ 〈w1, w2〉Q, we obtain � ∃z ∈ Q.(β = α + z) ∨ ∃w ∈
Q.(α = β + w). �

Notation. We write α < β for ∃x ∈ Q.((β = α + x) ∧ ¬(x = 0Q)).

5.2. Real Numbers and Observables

Real Numbers

The quantum real numbers are constructed from the quantum rationals by
Dedekind cuts. We say that a term  of type PP(N × N ) is a quantum real number,
or simply a real, if it satisfies all the following conditions.

(R1)  ⊆ Q
(R2) ∃x ∈ Q.(x ∈ )
(R3) ∃x ∈ Q.¬(x ∈ )
(R4) ∃x ∈ .(x < y) ⇒ (y ∈ )
(R5) (x ∈ ) ⇒ ∃y ∈ .(y < x)

In other words, setting Real() ≡ ( ⊆ Q) ∧ ∃x ∈ Q.(x ∈ ) ∧ ∃x ∈ Q.

¬(x ∈ ) ∧ (∃x ∈ .(x < y) ⇒ (y ∈ )) ∧ ((x ∈ ) ⇒ ∃y ∈ .(x < x)), we
consider Real() as the predicate asserting that “ is a quantum real.” In the
sequel, we use metavariables K , , M, N to range over quantum real numbers.
The set of all non-negative reals is represented by the LN-set R ≡ {x ∈ PQ |
Real(x)}.

We set αR ≡ {x ∈ Q | α < x} for each quantum rational α. Clearly, � αR ∈ R.
That is, αR is a quantum real corresponding to the quantum rational α.

Observables

We now look at quantum reals from the perspectives of ordinary mathematics
and physics. The following argument is substantially based on the discussion in
Takeuti (1978).

We present here a suggestive interpretation ofLN along the lines of Section 3.
Let D� be the orthomodular lattice of projections on some Hilbert space H, and
DN the set of ordinary natural numbers. 0 is interpreted as 0, and S the usual
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+1-function. Then clearly, Q corresponds to the set of ordinary (non-negative)
rational numbers, which is denoted by QO .

Suppose that  is a quantum real. For given ordinary (non-negative) rational
α, there exists a corresponding quantum rational, say α̂. Using this notation, we
set Pα̂ ≡ α̂ ∈ . Then the following equations hold.

∨

α∈QO

Pα̂ = 	 (5.4)

∧

α∈QO

Pα̂ = ⊥ (5.5)

Pα̂ =
∨

β<α

Pβ̂ (5.6)

Let RO be the set of ordinary (non-negative) real numbers. For M, N ∈ RO and
EM ≡ ∨

α< M Pα̂ , the following equations hold.
∨

M∈RO

EM = 	 (5.7)

∧

M∈RO

EM = ⊥ (5.8)

EM =
∨

N< M

EN (5.9)

This means that {EM}M∈RO can be regarded as a spectral measure on H. In other
words, for given quantum real , there exists a corresponding spectral measure
{EM}M∈RO on H. Using the fact that there is a one-to-one correspondence between
spectral measures and self-adjoint operators, we can say that a quantum real is
interpreted as an observable on H.

5.3. Full Reals

In this last subsection, we extend the concept of quantum numbers to include
negative numbers.

Addition of R

To define addition of R, we write M + N for {x ∈ Q|(x = β + γ ) ∧ (β ∈
M) ∧ (γ ∈ N )}. We need to check that � M + N ∈ R. It is immediate that M + N
satisfies (R1)–(R3) and (R5). To verify (R4), we must prove � ((α ∈ M + N ) ∧
(α < β)) ⇒ (β ∈ M + N ). Note that for any rational α except 0Q, (α < β) =
(α∗α < α∗β) = (1Q < α∗β) = (1Q < α∗β). holds. Lettingα = α1 + α2, α1 ∈ M ,
and α2 ∈ N , we have α1 < α∗βα1 and α2 < α∗βα2, that is, we have α∗βα1 ∈ M
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and α∗βα2 ∈ N . Hence, we obtain β = α∗β(α1 + α2) = α∗βα1 + α∗βα2 ∈
M + N .

This +, as expected, satisfies the usual properties of addition.

Proposition 5.9. � (0Q)R +  = .

Proof: It is obvious that � (0Q)R +  ⊆ . We show that �  ⊆ (0Q)R + .
Since we have � (α ∈ ) ⇒ ((γ ∈ ) ∧ (β ∈ Q) ∧ (α = γ + β) ∧ ¬(β = 0Q))
by (R5) and β ∈ Q ∧ ¬ (β = 0Q)R � β ∈ (0Q)R, we obtain � (α ∈ ) ⇒ ((β ∈
(0Q)R) ∧ (γ ∈ ) ∧ (α = β + γ )), which is the desired result. �

Proposition 5.10. � M + N = N + M.

Proof: This follows from the properties of Q. �

Proposition 5.11. � ( + M) + N =  + (M + N ).

Proof: This follows from the properties of Q. �

5.3.1. Negative Reals

Our goal is to extend the set of quantum reals R to include the additive inverse
of each element. We accomplish this by considering equivalence classes as we have
done in the case of rationals.

Let 〈M, N 〉R ≡ {〈x , y〉 ∈ R × R|∃z ∈ R.((M + y) + z = (N + x) + z)} for
each pair 〈M, N 〉 such that � 〈M, N 〉 ∈ R × R. Intuitively, 〈M, N 〉R corresponds
to the usual real number M − N .

Theorem 5.12. The LN -set {〈〈x , y〉, 〈z, w〉〉 ∈ (R × R) × (R × R) |〈x , y〉 ∈
〈z, w〉R}. is an equivalence relation.

Proof: This follows from the properties of R. �

Finally, we define addition of the full reals as 〈K , 〉R + 〈M, N 〉R ≡ 〈K +
M, ∀ + N 〉R. The fact that this + operation is indeed well-defined, commutative
and associative is easily verified by the properties of R. The zero element is 〈(0Q)R,
(0Q)R〉R, the inverse element of 〈M, N 〉R is 〈N , M〉R, and any non-negative real
 naturally corresponds to 〈, (0Q)R〉R. Thus, we can say that this representation
of numbers by the equivalence classes is regarded as an extension of N, Q, and R.
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